Radiation Health Effects

Elena Buglova

Department of Nuclear Safety and Security Incident and Emergency Centre

International Atomic Energy Agency

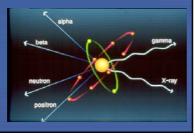
Content

- Historical background
- Primary target for cell damage
- Deterministic effects
- Stochastic effects
- Effects of in-utero exposure
- Practical application of fundamental knowledge
- Summary

() IAEA

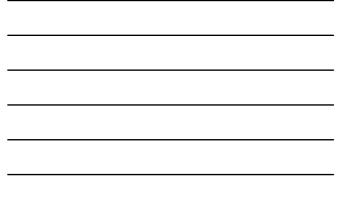
Facts

- Radiation is a fact of life all around us, all the time
- There are two classes of radiation
 - Non-ionizing radiation
 - Ionizing radiation



- The origin of the radiation
 - Natural radiation
 - Artificial (human-made) radiation

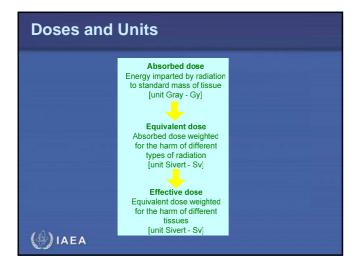
Types of Radiation

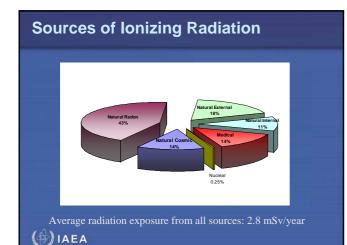

• Often considered in three different groups

- Alpha (α), beta (β)
- Gamma (γ), X-ray
- Neutrons

Discovery of X rays (1895)

Discovery of Uranium's Natural Radioactivity

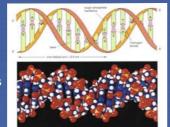

Antoine Henri Becquerel


Marie Curie

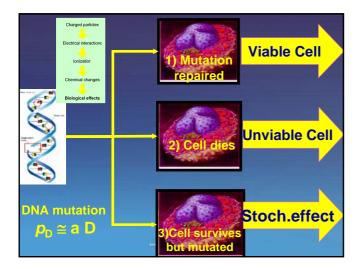
Basic Terms

- Activity: the quantity of radioactive material present at a given time
 - Unit: becquerel (one disintegration per second)
 Symbol: Bq
 - Old unit: curie (Ci)

More information on terms: IAEA Safety Glossary http://www-ns.iaea.org/standards/safety-glossary.htm

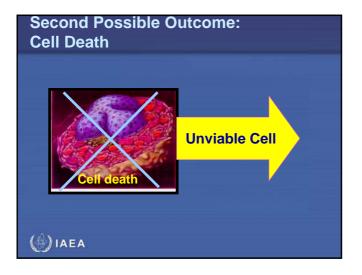

First Medical Findings

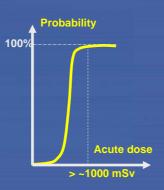
- First skin-burn attributed to radiation 1901
- First radiation induced leukemia described -1911
- First publication describing "a clinical syndrome due to atomic bomb" - 1946



Ionizing Radiation and Human Cell

 Primary target for cell damage from ionizing radiation is deoxyribonucleic acid (DNA) in chromosomes of cell's nuclei





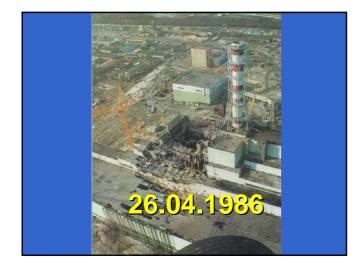
Deterministic Health Effects

- A radiation effect for which generally a threshold level of dose exists above which the severity of the effect is greater for a higher dose
 - many cells die or have function altered

() IAEA

- occurs when the dose is above given threshold (specific for the given effect)
- severity increases with the dose

Deterministic Health Effects

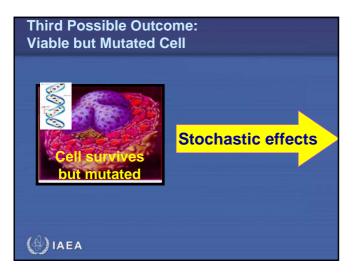

- Data on deterministic health effects are collected from observation of:
 - side effects of radiotherapy
 - effects on the early radiologists
 - effects amongst survivors of the atomic bombs at Hiroshima and Nagasaki in Japan
 - consequences of severe accidents
 - In 1944-2004:
 - 428 registered emergencies (REAC/TS Registry of radiation accidents)
 - ~ 3000 overexposed people (whole body dose >0.25 Sv, H skin > 6 Sv, or H other organ > 0.75 Sv)
 - 134 fatalities

() IAEA

Deterministic Health Effects					
	Dose in less	Determinis	tic effects		
Organ or tissue	than 2 days, Gy	Type of effect	Time of occurrence		
Whole body (bone marrow)	1	Acute Radiation Syndrome (ARS)	1 – 2 months		
Skin	3	Erythema	1 – 3 weeks		
Thyroid	5	Hypothyroidism	1st – several years		
Lens of the eye	2	Cataract	6 months - several years		
Gonads	3	Permanent sterility	weeks		

Deterministic Health Effects


Chernobyl experience:
Acute Radiation Syndrome and Radiation burns



Deterministic Health Effects After Chernobyl

- Very high doses on-site
- 134 cases of ARS among responders (fire fighters and recovery operation workers):
 - 28 died in 1986 from a combination of high external doses of γ-exposure (2.2-16 Gy) and skin burns due to β-emitters
 - 17 died in 1987-2004 from various causes, not all linked to radiation
- No cases of acute radiation syndrome have been recorded among the general public

() IAEA

Stochastic Health Effects

- A radiation-induced health effect, occurring without a threshold level of dose:
 - probability is proportional to the dose
 - severity is independent of the dose
- Stochastic health effects:
 - Radiation-induced cancers
 - Hereditary effects
- Late appearance (years)
- Latency period:
 - Several years for cancer
 - Hundreds of years for hereditary effects


💮 IAEA

Sources of Data on Stochastic Health Effects

- Occupational exposure
- Early radiologist and medical physicists
 - Radium-dial painters
 - U-miners, nuclear industry workers
- A-bomb victims
- Overexposed from accidents
- Irradiated for medical reasons

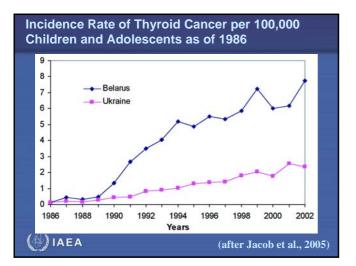
Cohort of Hiroshima & Nagasaki (Life Span Study, LSS)

- Primary source of information:
 - 86,500 individuals of:
 - both sexes and
 - all ages
 - dosimetric data over a range of doses
 - Average dose 0.27 Sv
 - ~ 6,000 individuals exposed in dose > 0.1 Sv
 - ~ 700 individuals exposed in dose > 1 Sv

LSS Solid Cancer Mortality

- 47 years of follow-up (1950-1997)
- Observed: 9,335 fatal cases of solid cancer
- Expected: ~8,895 fatal cases of solid cancer
 - i.e. ~440 cancers (5%) attributable to radiation

(Preston et al, Radiat Res 160:381-407, 2003)


Summary of Epidemiological Estimates Cancer Risks

· Cancer mortality risk for fatal solid cancers

~0.005% per mSv

Radiation-Induced Cancers: Chernobyl Experience

Other Radiation-Induced Cancers

- "Liquidators"
 - Doubling of leukaemia morbidity in workers with D>150 mGy
 - Some increase of mortality (~5%) caused by solid cancers and cardiovascular diseases
 - Increased cataract frequency
 - doses recorded in the Registries range up to about 500 mGy, with an average of ~ 100 mGy

() IAEA

Other Radiation-Induced Cancers (2)

General public

- No increase of leukaemia
- No increase of solid cancers except of thyroid cancer in children and adolescents (considered above)
- Effective dose during 1986-2005 range from a few mSv to some hundred mSv with an average dose 10 - 20 mSv

() IAEA

Hereditary Effects

- Effects to be observed in offspring born after one or both parents had been irradiated prior to conception
- Radiation exposure does not induce new types of mutations in the germ cells but increase the incidence of spontaneous mutations

() IAEA

Hereditary Effects

- Descendents of Hiroshima and Nagasaki survivors were studied
- A cohort of 31,150 children born to parents who were within 2 km of the hypocenter at the time of the bombing was compared with a control cohort of 41,066 children

But, no statistical abnormalities were detected

Hereditary Effects

- In the absence of human data the estimation of hereditary effects are based on animal studies
- Risks to offspring following prenatal exposure:
 - Total risk = 0.0003 0.0005% pe mGy to the first generation
 - Constitutes 0.4-0.6% of baseline frequency (UNSCEAR 2001 Report Hereditary Effects of Radiation)

Typical Effects of Radiation on Embryo/Foetus

- Death of the embryo or

 - growth retardation
 - functional disturbance
- Factors influencing the
 - probability of effects
 - Dose for embryo or fœtus
 - Gestation status at the time of exposure

Severe Mental Retardation

- A study of about 1,600 children exposed inutero at Hiroshima and Nagasaki to various radiation doses and at various developmental stages:
 - excess mental retardation was at a maximum between 8 and 15 weeks
 - Risk: 0.05% per mSv (8-15 weeks)

() IAEA

In Summary

- Radiation may cause two types of health effects: deterministic (e.g., radiation burns) and stochastic (e.g., radiation-induced cancer)
- Our knowledge of these effects forms the basis for the system of radiation safety and for response to radiation emergencies

Thank you () IAEA